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Abstract
In this paper, we consider the equations governing an inviscid, thermally
non-conducting fluid of infinite electrical conductivity in the presence of a
magnetic field and subject to no extraneous force. By using conveniently the
Lie point symmetries admitted, we map the governing system into an equivalent
autonomous form. The transformed system can be directly inspected in order
to find some simple solutions that, written in terms of the original variables,
provide non-trivial exact solutions of the system at hand. Use is made of some
finite transformations known in the literature as substitution principles, enabling
us to build exact solutions containing some arbitrary functions. The link
between the substitution principle and the recently discovered Bogoyavlenskij
symmetries for equilibrium magnetohydrodynamics is also discussed. Some of
the recovered solutions are considered to solve well-known physically relevant
boundary value problems and the linear stability analysis is performed, thus
generalizing well-established results.

PACS numbers: 02.30.Jr, 51.10.+y
Mathematics Subject Classification: 35C05, 76M60

1. Introduction

The explicit determination of exact solutions to systems of partial differential equations (PDEs)
of physical interest is an important task, especially when the solutions contain arbitrary
functions useful for solving initial and/or boundary value problems. One of the most powerful
methods in order to determine particular solutions to PDEs is based upon the study of their
invariance with respect to one-parameter Lie group of point transformations [1–7] allowing
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for the determination of similarity solutions: this method is also referred to as Lie direct
method.

In contrast, one may address the inverse problem, which consists in finding the constraints
to be imposed to a given set of PDEs in order to have their invariance with respect to an
assigned family of transformations; for instance, this is the case of the results known in
literature as substitution principles, originally introduced for the steady equations of ideal gas
dynamics [8, 9] and of the steady magneto-gas-dynamics [10] when a separable equation of
state is taken or of the symmetries recently found by Bogoyavlenskij [11] for the equilibrium
equations of magnetohydrodynamics. Substitution principles have also been given for the
unsteady equations of ideal gas dynamics having the pressure steady [12] and for the unsteady
equations of ideal magneto-gas-dynamics having the total magnetic pressure steady [13].

The substitution principle for equations of ideal gas dynamics has also been revisited
[14, 15] within the context of Lie groups of infinitesimal transformations. As a consequence,
some generalizations of the substitution principle given by Smith [12] have been provided for
the unsteady equations of ideal gas dynamics and a new substitution principle [15] was stated
for the n-dimensional flow of a perfect gas with the adiabatic index equal to n+2

n
. Furthermore,

various classes of exact solutions have been determined [16–18].
The substitution principles for the steady as well as unsteady equations of magneto-gas-

dynamics have been considered within the framework of Lie group analysis in [19], where
some generalizations have been provided: in particular, a new substitution principle for a plane
flow of a fluid with adiabatic index equal to 2 and subjected to a transverse magnetic field
has been established. The transformations for the steady equations of magnetohydrodynamics
introduced by Bogoyavlenskij [11] contain as a special subcase the substitution principle
for steady incompressible magneto-gas-dynamics; also, Cheviakov [20] proved that these
Bogoyavlenskij symmetries can be derived within the context of Lie group analysis; up
to now, unfortunately, no extension of Bogoyavlevskij symmetries to the unsteady case is
known.

In the present paper, we determine some classes of exact solutions to the equations of
ideal magneto-gas-dynamics by using in a suitable way the admitted Lie point symmetries
[7]. Also, for some of these solutions either the substitution principles or the Bogoyavlevskij
transformations can be applied, and this enables us to obtain solutions that involve some
arbitrary functions; this may provide some useful degrees of freedom in solving initial and/or
boundary value problems of physical interest.

More precisely, by using the Lie point symmetries of the governing equations, we construct
some invertible transformations suitable to map the equations at hand to a new equivalent
autonomous form [21, 22], from which we may obtain by inspection some exact solutions
that, written in terms of the original variables, may represent non-trivial physically meaningful
solutions; then the substitution principles or the Bogoyavlenskij transformations can be used
with some of these solutions and new solutions are constructed.

In section 2, we report the Lie symmetries admitted by the equations of ideal magneto-
gas-dynamics and briefly sketch the statements of the theorems concerned with the substitution
principles and the Bogoyavlenskij symmetries that will be used through the rest of the paper.
In sections 3 and 4, we consider steady and unsteady ideal magneto-gas-dynamics equations,
respectively, and derive some exact explicit solutions depending upon two or three space
variables. In section 5, we look for solutions describing a plane motion of a fluid with the
adiabatic index equal to 2 and subjected to a transverse magnetic field. In section 6, we
consider some boundary value problems of physical interest and investigate the linear stability
of some solutions we obtained; some results quoted in [23] are generalized. Finally, section 7
presents some concluding remarks.
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2. Invariance of the equations

The equations governing the 3D flow of an inviscid, thermally non-conducting fluid of infinite
electrical conductivity in the presence of a magnetic field and subject to no extraneous force
are

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂s

∂t
+ v · ∇s = 0,

ρ

(
∂v
∂t

+ (v · ∇)v
)

+ ∇p + µH × (∇ × H) = 0, (1)

∂H
∂t

− ∇ × (v × H) = 0, ∇ · H = 0,

where ρ(t, x) is the mass density, p(t, x) is the pressure, s(t, x) (a function of) is the entropy,
µ is the constant magnetic permeability, v(t, x) ≡ (v1, v2, v3) and H(t, x) ≡ (H1,H2,H3)

are the velocity and magnetic fields, respectively, x ≡ (x1, x2, x3) is the rectangular Cartesian
coordinates and t is the time. In the following we shall also consider the 2D version of
equations (1) (namely, the equations where the field variables are assumed independent of x3

and where v3 = H3 = 0).
The system (1) is supplemented by the equation of perfect gases

ρ = p1/� · s, (2)

where � is the adiabatic index.
The Lie groups of point transformations that leave the system (1) invariant [7] span a

(n2 + 3n + 8)/2-dimensional Lie algebra, where n (that will assume in the following the values
2 or 3) is the number of space variables, generated by the following vector fields:

�1 = ∂

∂t
, �k+1 = ∂

∂xk

, �n+2 = t
∂

∂t
+

n∑
k=1

xk

∂

∂xk

,

�3+n = −t
∂

∂t
+

n∑
k=1

vk

∂

∂vk

+
2�

� − 1

(
p

∂

∂p
+

n∑
k=1

Hk

2

∂

∂Hk

)
,

�4+n = �

� − 1

(
p

∂

∂p
+

n∑
k=1

Hk

2

∂

∂Hk

)
+ s

∂

∂s
,

�4+n+k = t
∂

∂xk

+
∂

∂vk

,

�2n+4+l = xi

∂

∂xj

− xj

∂

∂xi

+ vi

∂

∂vj

− vj

∂

∂vi

+ Hi

∂

∂Hj

− Hj

∂

∂Hi

,

(3)

with i, j, k = 1, . . . , n, j > i, l = 1, . . . , n(n − 1)/2. The operators �1, . . . , �n+1

characterize time and space translations, �n+2, �n+3 and �n+4 stretching transformations,
�n+5, . . . , �2n+4 the Galilean transformations; finally, the remaining operators characterize
the spatial rotations.

It is worth noting the case where we consider a plane flow with a transverse magnetic
field, i.e.,

v = v1(x1, x2, t) e1 + v2(x1, x2, t) e2, H = h(x1, x2, t) e3, (4)

where e1, e2 and e3 are the unit vectors along the axes x1, x2 and x3, respectively, and � = 2.
The operators of the admitted Lie point symmetries (see [24]) are
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�1 = ∂

∂t
, �2 = ∂

∂x1
, �3 = ∂

∂x2
,

�4 = t
∂

∂t
+ x1

∂

∂x1
+ x2

∂

∂x2
,

�5 = −t
∂

∂t
+ v1

∂

∂v1
+ v2

∂

∂v2
+ 4

(
p

∂

∂p
+

h

2

∂

∂h

)
,

�6 = 2

(
p

∂

∂p
+

h

2

∂

∂h

)
+ s

∂

∂s
,

�7 = t
∂

∂x1
+

∂

∂v1
, �8 = t

∂

∂x2
+

∂

∂v2
,

�9 = x2
∂

∂x1
− x1

∂

∂x2
+ v2

∂

∂v1
− v1

∂

∂v2
,

�10 = t2 ∂

∂t
+

2∑
i=1

(
txi

∂

∂xi

+ (xi − vit)
∂

∂vi

)
− 4t

(
p

∂

∂p
+

h

2

∂

∂h

)
,

�11 = F
( p

h2
, s

) (
2p

∂

∂p
− s

∂

∂s
− 2p

µh

∂

∂h

)
,

where F
(

p

h2 , s
)

is an arbitrary function of the indicated arguments.
The infinitesimal operator �10, characterizing the projective group, will prove very useful

in the subsequent analysis; in fact, by considering the similarity solutions left invariant by the
projective transformation, the reduced system has the same form as the steady system (i.e.,
the system in which the field variables do not depend on t). This means that if we know a
steady solution describing a plane flow with a transverse magnetic field and � = 2, then we
get immediately an unsteady solution.

In view of the analysis that will be pursued in the following, let us also consider the Lie
groups of point transformations that leave the steady equations of perfect gases invariant [7];
the admitted vector fields

�k = ∂

∂xk

, �n+1 =
n∑

k=1

xk

∂

∂xk

,

�n+2 =
n∑

k=1

vk

∂

∂vk

+
2�

� − 1

(
p

∂

∂p
+

n∑
k=1

Hk

2

∂

∂Hk

)
,

�n+3 =
n∑

k=1

vk

∂

∂vk

− 2s
∂

∂s
,

�n+3+l = xi

∂

∂xj

− xj

∂

∂xi

+ vi

∂

∂vj

− vj

∂

∂vi

+ Hi

∂

∂Hj

− Hj

∂

∂Hi

,

(5)

with i, j, k = 1, . . . , n, j > i, l = 1, . . . , n(n − 1)/2, generate a (n2 + n + 6)/2-dimensional
Lie algebra.

Usually, the knowledge of the Lie point symmetries admitted by a system of PDEs is
employed to characterize classes of invariant solutions. But, one may use them to introduce
suitable invertible point transformations allowing one to map a given source system of PDEs
to an equivalent form (target system) for which classes of exact solutions may be found
by simple inspection. The latter task may be accomplished, for instance, by using a result
proved in [22] (see also [21]): what is needed is the invariance of the equations at hand with
respect to q independent Lie groups of point transformations whose infinitesimal operators
generate an Abelian Lie algebra, where q is equal to the number of independent variables.
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The invertible point transformation, which is built by considering the canonical variables
associated with the q infinitesimal operators, maps the system to an equivalent autonomous
form if the source system is not autonomous. Remarkably, the theorem can also be applied
when the source system is autonomous: in this case, we get an equivalent autonomous
system. The transformation of an autonomous system to an equivalent autonomous one
can give, in a simple and systematic way, non-trivial solutions: for instance, the constant
solutions of the original autonomous system may be trivial, conversely the constant solutions
of the transformed autonomous system may give non-trivial non-constant solutions of the
original system (see for instance [25] where this procedure is used to study the propagation of
discontinuity waves in non-constant states described by self-similar solution as a propagation
problem in a constant state of a transformed system). The procedure to be applied requires a
lot of lengthy though straightforward calculations, but it can be rendered quite automatic by
using computer algebra packages oriented towards Lie symmetries of differential equations
[26–28]: all that is required is to determine the canonical variables of a suitable subset of the
Lie groups of invariance and rewrite the differential equations in terms of different sets of
variables.

As remarked above, in the applications it is important to determine solutions containing
arbitrary functions in order to have some degrees of freedom in solving initial and/or boundary
value problems of physical interest. This is also achieved through the use of some results
known in literature as substitution principles or of the recent Bogoyavlenskij symmetries.
Thus, let us give a brief sketch of the involved theorems [10, 11, 13, 19].

In [10], it has been proved that the steady ideal magneto-gas-dynamics equations, with
a separable equation of state (which includes (2)), are invariant with respect to the following
family of transformations:

v∗ = v
m(x)

, p∗ = p, H∗ = H, s∗ = [m(x)]2s,

m = m(x) being an arbitrary scalar function of the space variables subjected to the conditions

v · ∇m = H · ∇m = 0, (6)

which mean that the function m(x) must be constant along each individual streamline and
along each individual magnetic line.

Power and Rogers [13] extended this result to the class of unsteady flows having the total
magnetic pressure steady. They proved that if

{v(x, t), p(x, t), H(x, t), s(x, t)}
is a solution to the unsteady magneto-gas-dynamics equations with the total magnetic pressure
p + µ

2 H · H steady, then{
m(x)v(x,mt + g(m)), p(x,mt + g(m)),

H(x,mt + g(m)), [m(x)]−2s(x,mt + g(m))

}
where m(x) is a steady differentiable scalar function such that the constraints (6) are verified
for all t, and g(m) is an arbitrary function of its argument, is also a solution.

Moreover, in [19] it has been proved a mixed substitution principle (linking steady to
unsteady solutions), i.e., if

{v1(x1, x2), v2(x1, x2), p(x1, x2), h(x1, x2), s(x1, x2)}
is a solution set to the steady planar magneto-gas-dynamics equations with the magnetic field
transverse to the plane of motion, and the adiabatic index is equal to 2, provided m(x1, x2)

satisfies the condition

v1
∂m

∂x1
+ v2

∂m

∂x2
= 0,
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then 
x1

t
+

1

t
m

(x1

t
,
x2

t

)
v1

(x1

t
,
x2

t

)
,
x2

t
+

1

t
m

(x1

t
,
x2

t

)
v2

(x1

t
,
x2

t

)
,

1

t4
p

(x1

t
,
x2

t

)
,

1

t2
h

(x1

t
,
x2

t

)
,
[
m

(x1

t
,
x2

t

)]−2
s
(x1

t
,
x2

t

)


is a solution set to the unsteady planar equations with the magnetic field transverse to the plane
of motion.

The substitution principle for steady incompressible magneto-gas-dynamics [10] is a
special subcase of the family of transformations found by Bogoyavlenskij [11] for the
magnetohydrodynamics equilibrium equations in the case where the subsonic dynamics of
plasma is considered (in such a case the condition ∇ · v = 0 is satisfied with high accuracy
and this implies, by using the continuity equation, that the plasma density ρ is constant along
the streamlines). The main result proved in [11] can be stated as follows.

Let ρ(x), H(x), v(x), p(x) be an arbitrary solution of ideal magneto-gas-dynamics for
which ∇ · v = 0. A new solution is given by

ρ1(x) = a2(x)ρ(x), v1(x) = c(x)

a(x)

√
µ

ρ(x)
H(x) +

b(x)

a(x)
v(x),

H1(x) = b(x)H(x) + c(x)

√
ρ(x)

µ
v(x), p1(x) = Cp(x) +

µ

2

(
CH2(x) − H2

1(x)
)

where a(x), b(x), c(x) and ρ(x) > 0 are arbitrary smooth functions that are constant along
the magnetic field lines and on the plasma streamlines. Moreover, the functions b(x) and c(x)

satisfy the condition

b2(x) − c2(x) = C = const.

It is easy to recognize that the substitution principle (which holds true also in the case of
non-solenoidal velocity fields) is recovered by choosing a(x) = m(x), b(x) ≡ 1 and c(x) ≡ 0.

3. Steady equations

Let us consider a 2D steady flow. From (5), when n = 2, we have the invariance of
equations (1) with respect to six Lie groups for which the non-zero commutators are

[�1, �3] = �1, [�2, �3] = �2, [�1, �6] = −�2, [�2, �6] = �1.

To transform the governing system into an equivalent autonomous form [22] we need two
commuting infinitesimal operators: thus, we consider two linearly independent combinations
of the admitted operators �1, . . . , �6:

�A =
6∑

i=1

αi�i, �B =
6∑

i=1

βi�i, (7)

with αi, βi (i = 1, . . . , 6) constants. If the conditions

α1β3 − α3β1 + α2β6 − α6β2 = 0, α1β6 − α6β1 − α2β3 + α3β2 = 0 (8)

hold true, then the operators �A and �B span a two-dimensional Abelian Lie algebra.
As a consequence [21, 22], we are able to introduce the following variable transformation

(provided that � = α6β3 − α3β6 �= 0):
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X1 =
2∑

i=1

aiφi

�
, X2 =

2∑
i=1

biφi

�
,

v1 = exp

(
2∑

i=1

ciφi

�

)
(φ3V1 − φ4V2), v2 = exp

(
2∑

i=1

ciφi

�

)
(φ4V1 + φ3V2),

H1 = exp

(
2∑

i=1

diφi

�

)
(φ3Ĥ 1 − φ4Ĥ 2), H2 = exp

(
2∑

i=1

diφi

�

)
(φ4Ĥ 1 + φ3Ĥ 2),

p = exp

(
2

2∑
i=1

diφi

�

)
P, s = exp

(
2∑

i=1

eiφi

�

)
S,

where
a1 = β3, b1 = α3, a2 = β6, b2 = α6,

c1 = α3(β4 + β5) − β3(α4 + α5), c2 = α6(β4 + β5) − β6(α4 + α5),

d1 = �(α3β4 − α4β3)

� − 1
, d2 = �(α6β4 − α4β6)

� − 1
e1 = 2(α5β3 − α3β5), e2 = 2(α5β6 − α6β5),

k1 = α2α6 − α1α3

α2
3 + α2

6

k2 = −α2α3 − α1α6

α2
3 + α2

6

and φi (i = 1, . . . , 4) given by

φ1 = arctan

(
x2 − k2

x1 − k1

)
, φ2 = ln r, φ3 = x1 − k1

r
, φ4 = x2 − k2

r
,

with r =
√

(x1 − k1)2 + (x2 − k2)2.
By using X1, X2 as the new independent variables, and V1, V2, Ĥ 1, Ĥ 2, P and S as the

new dependent variables, the system (1) writes in a new equivalent autonomous form, i.e.,

∂(a(1V2)P
1/�)

∂X1
+

∂(b(1V2)P
1/�)

∂X2
+

(
c(1V2) +

2

�
d(1V2) + �V1

)
P 1/� = 0,

P 1/�S

(
a(1V2)

∂V1

∂X1
+ b(1V2)

∂V1

∂X2
+

(
c(1V2)V1 − �V 2

2

))
+ a2

∂P

∂X1
+ b2

∂P

∂X2

+ 2d2P − µĤ 2

(
∂(a1Ĥ 1 − a2Ĥ 2)

∂X1
+

∂(b1Ĥ 1 − b2Ĥ 2)

∂X2

+ d1Ĥ 1 − d2Ĥ 2 − �Ĥ 2

)
= 0,

P 1/�S

(
a(1V2)

∂V2

∂X1
+ b(1V2)

∂V2

∂X2
+ (c(1V2) + �V1)V2

)
+ a1

∂P

∂X1
+ b1

∂P

∂X2

+ 2d1P + µĤ 1

(
∂(a1Ĥ 1 − a2Ĥ 2)

∂X1
+

∂(b1Ĥ 1 − b2Ĥ 2)

∂X2

+ d1Ĥ 1 − d2Ĥ 2 − �Ĥ 2

)
= 0,

a1

(
Ĥ 1

∂V2

∂X1
− Ĥ 2

∂V1

∂X1

)
+ b1

(
Ĥ 1

∂V2

∂X2
− Ĥ 2

∂V1

∂X2

)
+ a(1V2)

∂Ĥ 1

∂X1

+ b(1V2)

∂Ĥ 1

∂X2
+ Ĥ 1(d(1V2) + �V1) + c1(Ĥ 1V2 − Ĥ 2V1) = 0,
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a2

(
Ĥ 2

∂V1

∂X1
− Ĥ 1

∂V2

∂X1

)
+ b2

(
Ĥ 2

∂V1

∂X2
− Ĥ 1

∂V2

∂X2

)
+ a(1V2)

∂Ĥ 2

∂X1

+ b(1V2)

∂Ĥ 2

∂X2
+ Ĥ 2(d(1V2) + �V2) + c2(Ĥ 2V1 − Ĥ 1V2) = 0,

∂(a(1Ĥ 2))

∂X1
+

∂(b(1Ĥ 2))

∂X2
+ (d(1Ĥ 2) + �Ĥ 1) = 0, a(1V2)

∂S

∂X1
+ b(1V2)

∂S

∂X2
+ e(1V2)S = 0,

(9)

where we used the notation w(1z2) = w1z2 + w2z1.
The system (9) has a more complicated structure than the original one, but we may take

advantage of this by looking for simple solutions; coming back to the true physical variables,
we finally determine a solution to the original system.

For instance, searching for solutions to the system (9) such that V1 = 0, V2 = v0

(v0 constant), Ĥ 1 = 0, we obtain the following solution to the system (1):

v1 = −v0(x2 − k2)r
α−1, v2 = v0(x1 − k1)r

α−1,

H1 = −(x2 − k2)r
−1χ(r), H2 = (x1 − k1)r

−1χ(r),

p = 
(r), s = 
 ′ + µχ(r−1χ + χ ′)
v2

0

1/�

r1−2α,

(10)

where α is an arbitrary constant, while χ(r) and 
(r) are arbitrary functions of r that should
be positive and increasing in order to have physically meaningful solutions; moreover the
prime ′ denotes, here and in the following, differentiation with respect to the argument.

A new exact solution is recovered by applying the Smith’s substitution principle to the
previous solution. In fact, by solving the constraint

(x2 − k2)
∂m

∂x1
− (x1 − k1)

∂m

∂x2
= 0,

whereupon it follows m = M(r), with M(r) being an arbitrary function of its argument, the
following new steady solution is found:

v1 = −(x2 − k2)�(r), v2 = (x1 − k1)�(r),

H1 = −(x2 − k2)r
−1χ(r), H2 = (x1 − k1)r

−1χ(r),

p = 
(r), s = 
 ′ + µχ(r−1χ + χ ′)
r�2
1/�

,

(11)

where we set �(r) = rα−1M(r). It is worth noting that the use of the Bogoyavlenskij
symmetries on the solution (10) gives the same solution (11).

If α6 = β6 = 0, whereupon conditions (8) imply α3 = β3 = 0, we may apply the same
procedure (construction of the invertible map and of a new autonomous system). By searching
the constant solutions to the transformed system, the following solution to the original system
is recovered:

v1 = −m1v0 exp(ζ ), v2 = l1v0 exp(ζ ), p = 
(ζ),

H1 = −m1χ(ζ ), H2 = l1χ(ζ ), s = s0 exp(−2ζ )
(12)

with v0, s0 > 0, l1,m1 being arbitrary constants, and χ(ζ ) and 
(ζ) being arbitrary functions
of ζ = l1x1 + m1x2 such that 
(ζ) is positive and 
 + µ

2

(
l2
1 + m2

1

)
χ2 is constant. By applying

again the Smith’s substitution principle, we recover a new steady solution:

v1 = −m1�(ζ), v2 = l1�(ζ), p = 
(ζ),

H1 = −m1χ(ζ ), H2 = l1χ(ζ ), s = s0v
2
0

�2(ζ )
,

(13)
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�(ζ) being an arbitrary function of ζ . Also in this case, the use of Bogoyavlenskij symmetries
on solution (12) gives the same result as that of the substitution principle.

In the 3D steady case it is not possible to construct three independent Lie groups with
commuting operators, and so we cannot use the procedure employed above. Nevertheless, we
may give 3D extensions of the 2D solutions recovered above. The natural extension of the
solution (10), written in compact form, is

v = ω × (x − k)Rα−1, H = ω × (x − k)R−1χ(R),

p = 
(R), s = 
 ′ + µχ(R−1χ + χ ′)
|ω × (x − k)|2R2α−3
1/�

,
(14)

where ω = [−z0, w0, v0]T and k = [k1, k2, k3]T are constant vectors, while χ(R) and 
(R)

are arbitrary (positive and increasing) functions of

R = ((
v2

0 + w2
0

)
(x1 − k1)

2 +
(
v2

0 + z2
0

)
(x2 − k2)

2 +
(
w2

0 + z2
0

)
(x3 − k3)

2

+ 2w0z0(x1 − k1)(x2 − k2) + 2v0(x3 − k3)(z0(x1 − k1) − w0(x2 − k2))
)1/2

.

By solving the constraint

(ω × (x − k)) · ∇m = 0,

whereupon we find m = M(R,Q), where M is an arbitrary function of R and Q = ω · (x−k),
we build the new steady solution:

v = ω × (x − k)�(R,Q), H = ω × (x − k)R−1χ(R),

p = 
(R), s = 
 ′ + µχ(R−1χ + χ ′)
R�2
1/�

.
(15)

For the solution (14), due to (2), the density is given by

ρ = 
 ′ + µχ(R−1χ + χ ′)
|ω × (x − k)|2R2α−3

. (16)

Since the solution (14) satisfies the requirements of the Bogoyavlenskij transformations
(7), and taking into account that the functions therein involved must be

a(x) = â(R,Q), b(x) = b̂(R,Q), c(x) = ĉ(R,Q),

with â, b̂ and ĉ (such that b̂ 2(R,Q) − ĉ 2(R,Q) = C = const) being arbitrary functions of
the indicated arguments, from the solution given by (14) and (16) we immediately generate
the new solution

ρ1 = â2(R,Q)ρ,

v1 = ĉ(R,Q)

â(R,Q)

√
µ

ρ
H +

√
C − ĉ 2(R,Q)

â(R,Q)
v,

H1 =
√

C + ĉ 2(R,Q)H + ĉ(R,Q)

√
ρ

µ
v,

p1 = Cp − µ

2

[
ĉ 2(R,Q)

(
H2 +

ρ

µ
v2

)
+ 2̂c(R,Q)

√
C + ĉ 2(R,Q)

√
ρ

µ
H · v

]
,

s1 = ρ1p
−1/�

1 ,

which is more general than that given in (15).
Also a 3D extension of solution (12) can be built in a similar way.
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4. Unsteady equations

Let us consider first the 2D unsteady equations: in order to map the governing equations to
an equivalent autonomous form we need three commuting infinitesimal operators; hence, we
take three linearly independent combinations of the nine admitted infinitesimal operators:

�A =
9∑

i=1

αi�i, �B =
9∑

i=1

βi�i, �C =
9∑

i=1

γi�i.

These operators commute provided that the constants αi , βi and γi (i = 1, . . . , 9) satisfy
the conditions

α[2β4] − α[3β9] + α[1β7] = 0, α[2β9] + α[3β4] + α[1β8] = 0,

α[8β9] + α[5β7] = 0, α[8β5] + α[7β9] = 0, α[1β4] − α[1β5] = 0,

α[2γ4] − α[3γ9] + α[1γ7] = 0, α[2γ9] + α[3γ4] + α[1γ8] = 0,

α[8γ9] + a[5γ7] = 0, α[8γ5] + α[7γ9] = 0, α[1γ4] − α[1γ5] = 0,

β[2γ4] − β[3γ9] + β[1γ7] = 0, β[2γ9] + β[3γ4] + β[1γ8] = 0,

β[8γ9] + β[5γ7] = 0, β[8γ5] + β[7γ9] = 0, β[1γ4] − β[1γ5] = 0,

where we have used the notation w[izj ] = wizj − wjzi (i �= j). By using the same procedure
as above, we construct an invertible point transformation allowing us to write the system (1),
specialized in 2D, to a new equivalent autonomous form.

Non-trivial unsteady solutions can be found when we set α4 = α5 = α9 = β4 = β5 =
β9 = γ4 = γ5 = γ9 = 0. The variable transformation is

T =
3∑

i=1

aiφi

�
, X1 =

3∑
i=1

biφi

�
, X2 =

3∑
i=1

ciφi

�
,

v1 = V1 +
α7

α1
t, v2 = V2 +

α8

α1
t,

H1 = exp

(
�

2(� − 1)

3∑
i=1

diφi

�

)
Ĥ 1, H2 = exp

(
�

2(� − 1)

3∑
i=1

diφi

�

)
Ĥ 2,

p = exp

(
�

� − 1

3∑
i=1

diφi

�

)
P, s = exp

(
3∑

i=1

diφi

�

)
S,

where

φ1 = x1 − α7

2α1
t2, φ2 = x2 − α8

2α1
t2, φ3 = t,

a1 = β[1γ3], a2 = β[2γ1], a3 = β[2γ3],

b1 = α[3γ1], b2 = α[1γ2], b3 = α[2γ3],

c1 = α[1β3], c2 = α[2β1], c3 = α[3β2], � = b2c1 − b1c2,

di = α6ai + β6bi + γ6ci, i = 1, 2, 3,

and T ,X1, X2 represent the new independent variables, whereas V1, V2, Ĥ 1, Ĥ 2, P and S
represent the new dependent variables.

A solution is obtained by assuming in the transformed system (whose listing is omitted)

α7V1 + α8V2 = c,
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where c is a constant. In terms of the original variables we have the following solution:

v1 = −α8�(ζ) +
α7

α1
t, v2 = c

α8
+ α7�(ζ) +

α8

α1
t,

H1 = −α8χ(ζ ), H2 = α7χ(ζ ),

p = 
(ζ), s = − α1


1/�

(

 +

µ

2

(
α2

7 + α2
8

)
χ2

)′
,

(17)

where �(ζ), χ(ζ ) and 
(ζ) are arbitrary functions of

ζ = α7x1 + α8x2 − ct − α2
7 + α2

8

2α1
t2.

In the 3D unsteady case it is not possible to build four linear independent combinations
of the admitted operators generating a four-dimensional Abelian Lie algebra. Nevertheless,
we may get solutions by extending in a natural way the solution (17); what we get is

v = Φ × α + α
α1

t + c, H = χ × α,

p = 
(ζ), s = − α1


1/�

(

 +

µ

2
(χ × α)2

)′
,

(18)

where α = [α7, α8, α9]T , c = [0, c, 0]T ,Φ = [0,�3,�2]T , χ = [0, χ3, χ2]T with �2(ζ ),

�3(ζ ), χ2(ζ ), χ3(ζ ) and 
(ζ) being arbitrary functions of

ζ = α · x − ct − |α|2
2α1

t2,

and c is a constant.
However, it should be remarked that the solutions (17) and (18) exhibit a blow up at least

in the velocity field and, moreover, do not satisfy the requirements of the substitution principle
for unsteady magneto-gas-dynamics.

5. Plane motion with a transverse magnetic field

A special case occurs when we consider a plane motion of a fluid with the adiabatic exponent
� is equal to 2 and subjected to a transverse magnetic field. Also in this case we consider three
commuting operators by taking three linearly independent combinations of the operators �i

(i = 1, . . . , 10), where the parameters α10, β10 and γ10 are non-vanishing.
In the following, in order to simplify the calculations without losing in generality, we take,

when it is possible, αi = βi = γi = 0 (i = 1, 2, 3, 7, 8): this means that we neglect space and
time translations and the Galilean transformations. This is not limiting since we may include
time and space translations and Galilean transformations directly in the solutions we shall find
by simply substituting t with t − k0, x1 with x1 − k1t − k2, x2 with x2 − k3t − k4, v1 with
v1 − k1 and v2 with v2 − k2 where ki (i = 0, . . . , 4) are arbitrary constants.

According to the choices of the parameters αi, βi and γi (i = 1, . . . , 9) we must distinguish
various cases. If the constants αi, βi , γi (i = 4, 5, 9) are not zero, the following transformation
can be introduced:

T =
3∑

i=1

aiφi

�
, X1 =

3∑
i=1

biφi

�
, X2 =

3∑
i=1

ciφi

�
,

v1 = 1

at2 + bt + c
(x1V1 − x2V2 + α10x1t),

v2 = 1

at2 + bt + c
(x2V1 + x1V2 + α10x2t),
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p = r4

(at2 + bt + c)4

(
2 exp

(
3∑

i=1

diφi

�

))
P,

h = r2

(at2 + bt + c)2

(
exp

(
3∑

i=1

diφi

�

))
H, s = exp

(
3∑

i=1

diφi

�

)
S,

(19)

where

a1 = β[4γ5], a2 = β[9γ4] − β[9γ5], a3 = 2β[4γ9],

b1 = α[5γ4], b2 = α[4γ9] − α[5γ9], b3 = 2α[4γ5],

c1 = α[4β5], c2 = α[9β4] − α[9β5], c3 = 2α[4β5],

di = α6ai + β6bi + γ6ci, i = 1, 2, 3,

φ1 = arctan
x2

x1
, φ2 = ln

(
r√

at2 + bt + c

)
− τ, φ3 = τ,

and

τ = b√
4ac − b2

arctan

(
2at + b√
4ac − b2

)
, r =

√
x2

1 + x2
2 ,

with a = α10, b = α4 − α5, c = α1, along with the constraints a > 0, 4ac − b2 > 0 and
� = (b2c3 − b3c2)/α9 �= 0.

By taking T ,X1 and X2 as the new independent variables, and V1, V2, P ,H and S as the
new dependent variables, we transform the governing system to a new equivalent autonomous
form that we omit to write here.

A solution may be obtained by assuming V1 and H to be constant. The solution, written
in terms of the original variables, is

v1 = (2at + b)x1 − 2x2�(ζ)

2(at2 + bt + c)
, v2 = 2x1�(ζ) + (2at + b)x2

2(at2 + bt + c)
,

p = 
(ζ)

(at2 + bt + c)2
, h = χ(ζ )

at2 + bt + c
, (20)

s = 8

4(�2 − ac) + b2


 ′ + µχχ ′
√



,

where �(ζ), χ(ζ ) and 
(ζ) are arbitrary functions of

ζ = r2

at2 + bt + c
.

By choosing �(ζ) = 0, 
(ζ ) = 
0ζ
−2 and χ(ζ ) = χ0ζ

−1 (
0, χ0 being arbitrary
positive constants), we obtain a solution where the total magnetic pressure is steady; if we
solve the constraint

x1
∂m

∂x1
+ x2

∂m

∂x2
= 0,

whereupon it follows m = M(x2/x1) (M arbitrary function of its argument), the use of the
substitution principle for unsteady flows [13] allows us to obtain the following new unsteady
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solution:

v1 = [2a(Mt + G) + b]x1M

2[a(Mt + G)2 + b(Mt + G) + c]
, p = 
0

r4
,

v2 = [2a(Mt + G) + b]x2M

2[a(Mt + G)2 + b(Mt + G) + c]
, h = χ0

r2
, (21)

s = 16

4ac − b2

(

0 +

µ

2
χ2

0

) [a(Mt + G)2 + b(Mt + G) + c]2

√

0r4M2

,

where G(x2/x1) is also an arbitrary function of its argument. By taking account of space
translations and Galilean transformations, we also have the solution

v1 = [2a(M̂t + Ĝ) + b](x1 − k1t − k2)

2[a(M̂t + Ĝ)2 + b(M̂t + Ĝ) + c]
M̂ + k1, p = 
0

r̂ 4
,

v2 = [2a(M̂t + Ĝ) + b](x2 − k3t − k4)

2[a(M̂t + Ĝ)2 + b(M̂t + Ĝ) + c]
M̂ + k3, h = χ0

r̂ 2
,

s = 16

4ac − b2

(

0 +

µ

2
χ2

0

) [a(M̂t + Ĝ)2 + b(M̂t + Ĝ) + c]2

√

0̂r 4M̂2

,

where M̂ and Ĝ are the arbitrary functions of (x2 − k3t − k4)/(x1 − k1t − k2), and

r̂ =
√(x1

t
− k1

)2
+

(x2

t
− k2

)2
. (22)

Moreover, if we set a = b = 0 into solution (20) (that becomes steady), we are able to
use the mixed substitution principle [19] and hence generate the new unsteady solution:

v1 = x1

t
− 1

t

(x2

t
− k2

)
M̂(̂r), v2 = x2

t
+

1

t

(x1

t
− k1

)
M̂(̂r),

p = 
̂(̂r)

t4
, h = χ̂ (̂r)

t2
, s = 
̂ ′ + µχ̂χ̂ ′

M̂2
√


̂
,

where M̂(̂r), 
̂(̂r) and χ̂ (̂r) are the arbitrary functions of r̂ given by (22). The latter solution
has an apparent singularity at t = 0; but if we take into account that the governing equations
are independent with respect to time translation, then we may substitute t with t +t0 (t0 arbitrary
constant) and remove the singularity.

Now we look for the exact solutions when we assume α9 = α4 and α5 �= β5 �= γ5 �= 0.
In this case, if we want an explicit transformation we need to choose α1 = β1 = γ1 = 0
and αi �= 0, βi �= 0, γi �= 0 (i = 2, 3). By assuming the transformed velocity non-constant
whose components are linked by the relation c1V1 + c2V2 = 0 (c1 and c2 constants), we find
the solution

v1 = c1(α10x1 + α7) − c2�(ζ)

c1(α10t − α5)
, v2 = (α10x2 + α8) + �(ζ)

α10t − α5
,

p = p0

(α10t − α5)4
, h = h0

(α10t − α5)2
, s = S(ζ ),

(23)

where p0 and h0 are the arbitrary constants, whereas V (ζ ) and S(ζ ) are the arbitrary functions
of

ζ = c1(α10x1 + α7) + c2(α10x2 + α8)

α10t − α5
.
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The subcase of the previous one that we must analyse to cover all the situations is the case
in which α5 = β5 = γ5 = 0. By searching for the solutions of the transformed system such
that α3V1 + α2V2 = c0 (c0 non-vanishing constant), we get

v1 = �(ζ)

t
+

(α10x1 + α7)t + α2

α10t2
,

v2 = c0 − α2�(ζ)

α3t
+

(α10x2 + α8)t + α3

α10t2
, (24)

h = χ(ζ )

t2
, p = 
(ζ)

t4
, s = α10(


′ + µχχ ′)√



,

where �(ζ), χ(ζ ) and 
(ζ) (such that p and s are positive) are the arbitrary functions of

ζ = α2x1 + α3x2

t
+

α2α7 + α3α8

α10t
+

c0

t
+

α2
2 + α2

3

2α10t2
.

If α3 = 0, one more solution is provided:

v1 = − d3

d2t
+

(α10x1 + α7)t + α2

α10t2
, v2 = v20

t
+

α10x2 + α8

α10t
,

p = p0

t4
exp(2d2ζ ), h = h0

t2
exp(d2ζ ), (25)

s = −2d2α10

α2
√

p0

(
p0 + µ

h2
0

2

)
exp(d2ζ ),

where

ζ = α10x1 + α7

t
+

α2

2α10t2
− d3

d2t
,

and v20 , p0 and h0 are the arbitrary constants such that p and s are positive. The same reasoning
as before allows us to remove the apparent singularity in t = 0.

6. Linear stability of some steady 2D solutions

In this section, we investigate the linear stability of solution (11) and solution (20) (with
a = b = 0, c = 1) under axisymmetric perturbations; a generalization of classical results
quoted in [23] is obtained.

The solution (11) in cylindrical coordinates (r, θ, z) reads

vr = vz = 0, vθ = �(r)r, Hr = Hz = 0, Hθ = χ(r),

p = 
(r), s = 
 ′ + µχ(r−1χ + χ ′)
r�2
1/�

, ρ = p1/�s.
(26)

By considering a flow between two rigid coaxial cylinders under the influence of a circular
magnetic field, we may specify the arbitrary functions by assigning the field at the boundaries
r = R1, r = R2, where R1 and R2 are the radii of inner and outer cylinders, respectively.

The previous solution contains a well-known solution [23] (section 83)

vr = vz = 0, vθ = �(r)r, Hr = Hz = 0, Hθ = χ(r),

ρ = ρ0 = const.,
∂

∂r

((
p +

µ

2
H · H

))
= (ρ0�

2r − µr−1χ2),
(27)

that is recovered from solution (26) when


(r) =
∫

(ρ0�
2r − µr−1χ2) dr − µ

2
χ2.
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In [29], it is proved that solution (27) is linearly stable for axisymmetric perturbations
(see [23]) if the Rayleigh’s discriminant

E(r) = ρ0

r3
((r2�)2)′ − µr((χr−1)2)′ > 0, ∀r ∈ [R1, R2]; (28)

therefore, condition (28), ensuring the linear stability, imposes restrictions on the functions
�(r) and χ(r).

Now let us examine the linear stability of solution (26) (where ρ is not constant). Let us
consider the axisymmetric perturbations

vr = ei(λz+kt)ur(r), vθ = ei(λz+kt)uθ (r) + r�(r), vz = ei(λz+kt)uz(r),

Hr = ei(λz+kt)H̃r (r), Hθ = ei(λz+kt)H̃θ (r) + χ(r), Hz = ei(λz+kt)H̃z(r),

ρ = ei(λz+kt)ρ̃(r) +
1

r�2
(
 ′ + µχ(r−1χ + χ ′)),

where k is constant and λ is the wave number of the disturbance in the z-direction. By
substituting the perturbed solution into the governing equations and solving the linearized
system, after some algebra what remains is

k2((ρ(u′
r + r−1ur))

′ − ρλ2ur) = −λ2E(r)ur, (29)

to be solved with the boundary conditions

ur = 0, at r = R1 and r = R2.

By multiplying (29) by rur and integrating by parts over the domain, we arrive at the condition

k2 = λ2
∫ R2

R1
E(r)u2

r r dr∫ R2

R1
rρ

(
(u′

r + r−1ur)2 + λ2u2
r

)
dr

.

In this case, the Rayleigh’s discriminant is given by

E(r) = 1

r3
(ρ(r2�)2)′ − µr((χr−1)2)′ = 1

r3
(r3(
 ′ + µχχ ′))′ + 4µ(χr−1)2;

as a consequence, solution (26) is linearly stable when E(r) > 0, whereupon the linear
stability requires restrictions on 
(r) and χ(r) not on �(r) and χ(r) as in the case considered
in [23].

Now, we consider solution (20) where we set a = b = 0 and c = 1, so recovering a
steady solution that in cylindrical coordinates reads

vr = 0, vθ = �(r)r,

p = 
(r), h = χ(r), s = 
 ′ + µχχ ′

r�2
√



, ρ = p1/�s.

(30)

Once again, let us consider an incompressible flow between two rigid coaxial cylinders
under the influence of an external applied axial magnetic field. By choosing


(r) = ρ0

∫
r�2 dr − µ

2
h2

0, χ = h0 = const,

our solution reduces to a well-known solution [23] (section 81):

vr = vz = 0, vθ = r�(r), Hr = Hθ = 0, Hz = h0,

ρ = ρ0 = const, p = ρ0

∫
r�2 dr − µ

2
h2

0.

It is linearly stable [23] when

µh2
0 >

∫ R2

R1
(4ρ0(�(r))2 − E(r))u2

r r dr∫ R2

R1
r
(
(u′

r + r−1ur)2 + λ2u2
r

)
dr

, (31)
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the Rayleigh’s discriminant being

E(r) = ρ0

r3
((r2�)2)′.

Now, let us study the linear stability of solution (30) with χ = h0, by using the
same boundary conditions considered in [23] (perturbation of radial velocity vanishing at
the boundaries).

By substituting the axisymmetric perturbed field variables (as above) in the governing
equations and solving the linearized system, we get the condition(
ρk2 − µh2

0λ
2
)2(

(u′
r + r−1ur)

′ − λ2ur

) = −λ2
(
ρk2 − µh2

0λ
2
)
E(r)ur − 4µh2

0λ
4�2ur,

from which, by multiplying by rur and integrating by parts over the domain, we get the
condition∫ R2

R1

r
(
ρk2 − µh2

0λ
2
)2(

(u′
r + r−1ur)

2 + λ2u2
r

)
dr

= λ2
∫ R2

R1

(
ρk2 − µh2

0λ
2
)
E(r)u2

r r dr + 4µh2
0λ

4
∫ R2

R1

r�2u2
r dr. (32)

Since the imaginary part of (32) is zero, we may write (32) as

I1k
4 − I2k

2 − I3 = 0, (33)

where

I1 =
∫ R2

R1

ρ2
(
(u′

r + r−1ur)
2 + λ2u2

r

)
r dr,

I2 = λ2
∫ R2

R1

ρ
(
2µh2

0

(
(u′

r + r−1ur)
2 + λ2u2

r

)
+ E(r)ur

)
r dr,

I3 = µh2
0λ

4
∫ R2

R1

(
�2u2

r − E(r)u2
r − µh2

0

(
(u′

r + r−1ur)
2 + λ2u2

r

))
r dr,

that provide

k2 =
I2 ±

√
I 2

2 + 4I1I3

2I1
.

Since I1 > 0, we have both values of k2 real and positive if I 2
2 + 4I1I3 > 0 and I3 < 0.

The last condition is satisfied if

µh2
0 >

∫ R2

R1
(4ρ(�(r))2 − E(r))u2

r r dr∫ R2

R1

(
(u′

r + r−1ur)2 + λ2u2
r

)
r dr

= J1

J2
, (34)

where the Rayleigh’s discriminant is

E(r) = 1

r3
(ρ(r2�)2)′ = 1

r3
(r3
 ′)′. (35)

The condition I 2
2 + 4I1I3 can be rewritten as

4µ2h4
0

(
J 2

3 − I1J2
)

+ 4µh2
0(J3J4 + I1J1) + J 2

4 = 0,

where

J3 =
∫ R2

R1

ρ
(
(u′

r + r−1ur)
2 + λ2u2

r

)
dr, J4 =

∫ R2

R1

ρE(r)ru2
r dr.

By using (34), we get

I 2
2 + 4I1I3 >

(2J1J3 + J4J2)
2

J 2
2

> 0.
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7. Concluding remarks

In this paper, the equations of ideal magneto-gas-dynamics have been considered in order to
obtain some explicit classes of solutions. The Lie point symmetries admitted by the system at
hand were used to conveniently transform the source system into an equivalent autonomous
target system. It has been shown how to build non-trivial exact solutions by the direct
inspection of the existence of some simple solutions of the transformed system.

The procedure here proposed involves lengthy but straightforward calculations (that can
be done easily through the use of a computer algebra system), but may provide a systematic
tool for finding classes of exact solutions to nonlinear PDEs.

Use has been made also of some finite transformations like the substitution principles and
the Bogoyavlenskij symmetries, whereupon we were able to generate exact solutions involving
some arbitrary functions, useful to study physically meaningful initial and/or boundary value
problems.

The linear stability with respect to axisymmetric perturbations of two planar steady
solutions, generalizing some known solutions considered in [23] for the flow between two
rigid coaxial cylinders under the influence of a circular magnetic field or of an axial magnetic
field, respectively, has also been investigated.

Various classes of time-dependent solutions have been obtained for planar magneto-gas-
dynamics equations with � = 2 and the magnetic field transverse to the plane of motion;
future work will be devoted to investigate more carefully these solutions and their stability
(see also [30]), as well as to build some more complicated solutions and use them for modelling
physically motivated situations.
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